0040-4020(95)00885-3 # Trifluoromethylalkenes in Cycloaddition Reactions# ## Danièle Bonnet-Delpon,* Jean-Pierre Bégué, Thierry Lequeux and Michèle Ourevitch CNRS - BIOCIS. Centre d'Etudes Pharmaceutiques. Tour D3, 5ème étage. Rue J.B. Clément. 92296 Châtenay-Malabry, France (Fax: 33-1-4683-57-40) **Abstract:** CF₃-Substituted alkenes have been described to be good partners in Diels-Alder reactions with the Danishefsky's diene and in 1,3-dipolar cycloadditions with nitrones and non-stabilized azomethine ylides. The influence of the CF₃-group on both the activation of the double bond and the stereochemistry of the cycloaddition has been evaluated. New CF₃-substituted mono- and polycyclic compounds 4 and 7, highly functionalized isoxazolidines 18, 19, 22 and 23 and pyrrolidines 12, 13 and 16 have been prepared. The formation of quaternary carbons bearing a trifluoromethyl group and in particular of angularly CF₃-substituted compounds is of great interest for the preparation of analogues of natural compounds such as terpenes, steroids, and alkaloids. Cycloadditions are among the most widely-used reactions in organic synthesis and such reactions with trifluoromethylated ethylenic compounds is very attractive for the construction of mono- and polycyclic compounds bearing CF₃-quaternary carbons. ^{1,2} Some examples of these cycloadditions have already been described with trifluoropropene.^{3,4} However, despite of the electronwithdrawing character of a CF₃ group, trifluoropropene exhibits a poor reactivity: this can be explained by the lack of π-electronwithdrawing character which is known to decrease significantly the LUMO energy level. More recently, and parallel to our investigations,⁵⁻⁸ successful Diels-Alder and 1-3 dipolar cycloadditions have been reported with ethylenic compounds bearing a CF₃ group and at least one other electronwithdrawing substituent such as sulfone,⁹ ester,^{3a,10,11,12,13} ketone,¹⁴ activated phenyl,^{3b} and nitro group,^{4b} providing elegant synthesis of alicyclic compounds, particularly in the steroid field. However none of these examples allow an evaluation of the activiting effect of a CF₃ group in cycloadditions. Herein we report our studies on the influence of the electronic and steric effects of the CF₃ group on the course of cycloadditions with CF₃-substituted alkenes, including di- and trisubstituted alkenes bearing a CF₃ group as the only electron withdrawing substituent. ### Results ### Diels-Alder Reaction Under thermal conditions, the 1-methoxy-3-trimethylsilyloxy-butan-1,3-diene (Danishefsky's diene) 1 and α -trifluoromethylstyrene 2¹⁵ afforded regioselectively a 1:1 mixture of *Endo/Exo* diastereoisomeric adducts 3. When treated with the bromotrimethylsilane in acetonitrile this mixture led to the racemic enone 4 in high yield (80 %), (Scheme 1).¹⁶ ### Scheme 1 Under the same conditions, the reaction of the sterically hindered 1-trifluoromethyl-3,4-dihydronaphthalene 5¹⁷ failed. However use of high pressure (15 Kbar) led to the formation of a single regioisomer 6 as a mixture of *Endo-Exo* adducts (ratio 1:1 estimated by GC analysis and ¹⁹F NMR). Treatment with bromotrimethylsilane led to the 4a-trifluoromethyl-1,9,10-trihydrophenanthren-2(1H)-one 7 in 20 % overall yield (Scheme 2).⁵ The structure of the phenanthrenone was determined from NMR data of the corresponding octahydrophenanthrenol 8 obtained through two successive reductions (H₂, Pd/C and then NaBH₄). Its ¹H constant with H-10 indicates an A/B cis junction, which has been confirmed by heteroNOESY F/H experiments. In order to improve the yield of 7, we investigated the cycloaddition reaction of the chromium tricarbonyl complex 9 with the Danishefsky's diene under high pressure. The use of the chromium complex dramatically increased the yield of the cycloaddition and slightly changed the stereoselectivity (70:30 mixture, ¹⁹F NMR determination). Decomplexation under sunlight and treatment by bromotrimethylsilane led to 10a-CF₃-phenanthrone 7 in a 65 % overall yield⁶ (Scheme 3). Scheme 3 ## 1,3-Dipolar cycloaddition reactions Non-stabilised azomethine ylide as dipole - The reaction of trifluoropropene with a stabilised azomethine ylide, generated by the ring opening of an aziridine, has been described to lead to a mixture of regio- and stereoadducts in less than 10 %. 4a This poor yield may be due to the thermal unstability of both reactants under thermal conditions or to their poor reactivity. We have investigated the cycloaddition reactions with non-stabilised azomethine ylides as dipoles. 7 These dipoles can be generated from an organosilylated compound under acidic catalysis and react at room temperature, with electron deficient dipolarophiles. 18 The reaction between the ylide, generated from the N-(trimethylsilylmethyl)-N-(pentoxymethyl)-benzylamine 11, with trifluoromethylstyrene 2 or ethyl β -trifluoromethylcinnamate 10 afforded, after 3 h at room temperature, the pyrrolidines 12 and 13 in 80 % and 70 % yield respectively (Scheme 4). No reaction with the 1-trifluoromethyl-3,4-dihydronaphthalene 5 occurred The determination of the relative configuration of substituents in pyrrolidine 13 could not be assigned from NMR experiments, but through the X ray diffraction of the chlorohydrate 14 (Scheme 5).³² ORTEP diagram of 14 ### Scheme 5 The 4-carbethoxy-3-trifluoromethylcyclohex-2-ene-1-one 15, fluorinated analogue of the Hagemann's ester, ¹⁹ led to the perhydroisoindolone 16 in moderate yield (48 %) after 3 h at room temperature (Scheme 6). From heteroNOE F/H experiments, enhancement of the junction proton H-3 signal is observed indicating a spatial proximity and thus a *cis* relationship between the CF₃ group and the proton H-3. In the 1 H NMR spectrum, the H-7 signal exhibits a large (9 Hz) and a small (4 Hz) coupling constant with H-6 indicating its axial position. This H-7 proton exhibits a 4 J_{HF} coupling constant that indicates either a *trans* diaxial position towards CF₃ (4 J W coupling constant), or a spatial proximity (through space coupling constant). The absence of heteroNOE rules out this proximity and demonstrates the *trans*-relationship between H-7 and CF₃. COOEt $$CF_3$$ CF_3 CH_2 - C_6 CH_2 - C_6 CH_3 CH_2 - C_6 CH_3 $CH_$ b. Nitrone as dipole - We have investigated reactions between the readily available stable nitrone, N-(benzylidene)-methylamine-N-oxide 17.8 The reaction was successful with a-trifluoromethyl styrene 2 and ethyl b-trifluoromethylcinnamate 10,²⁰ affording a diastereoisomeric mixture of trifluoromethyl isoxazolidines 18 in a 60% yield from 2, and a single diastereoisomer 19 (65 %) from 10 (Scheme 7). The reaction failed with the more sterically demanding 1-trifluoromethyl-3,4-dihydronaphthalene 5. CF₃ COOEt $$C_6H_5$$ Toluene, reflux, 24 h C_6H_5 C_6 These results prompted us to investigate the reactivity of ethyl trifluoroacetoacetate (ETFAA) 20 which could act as a dipolarophile in its enolic form. The reaction with nitrone 17 led regio- and stereoselectively to the isoxazolidine 22 (65 %) (Scheme 8). The corresponding enol ether 21²¹ displayed a similar reactivity but led to a mixture of two diastereoisomers 23a and 23b (8 2 ratio) in a 65% yield CF₃ COOEt $$CF_3$$ COOEt CF_3 $COOEt$ COO The stereochemistry of the adducts was determined by heteroNOE experiments. When irradiating the CF₃ group an enhancement of the H-4 proton signal in the isoxazolidines 22, 23a and 23b was observed (about 8-10%) indicating a spatial proximity of the CF₃ group and the H-4 proton and thus a *trans* relationship between the CF₃ and the CO₂Et groups. In the 1 H NMR spectrum, the high value (10 Hz) of the coupling constant between H-3 and H-4, indicates their *trans* relationship in 22 and 23a, while $J_{\text{H-3,H-4}}$ is only 7 Hz in 23b. This stereochemistry has been confirmed by X-ray diffraction of the isoxazolidine 22 (Figure 1). Figure 1: ORTEP diagram of isoxazolidine 22³² Reactions with the non-fluorinated analogues We have investigated the previously non reported cycloadditions with non-fluorinated alkenes (ie methyl parent compounds). Diels-Alder reaction. Reactions performed under thermal or high pressure conditions with Danishefsky's diene and the α -methylstyrene or the 1-methyl-1,2-dihydronaphthalene failed, providing polymeric or starting material. Starting materials were recovered when reactions were performed with chromium tricarbonyl complexes of these compounds²² under high pressure. 1,3-Dipolar reactions. With the non-stabilized azomethine ylide derived from 11, all attempts of reaction with α -methylstyrene, ethyl ethoxycrotonate, ethyl β -methylcinnamate, and the Hagemann's ester failed. Starting alkenes were recovered even after a long reaction time or at higher temperature. With the nitrone 17, the replacement of a trifluoromethyl group by a methyl group either has no major effect on reactivity (case of α -methylstyrene)²³ or entailed a dramatic loss of reactivity (ethyl acetoacetate, ethyl ethoxycrotonate and ethyl β -methylcinnamate). #### Discussion The success of reactions performed with CF₃-containing alkenes, compared to the unreactivity of methyl parent compounds, clearly shows the activating effect of the CF₃ group. In disubstituted alkenes, bearing only the CF₃ group as electronwithdrawing group, the electronic effect of the CF₃ group sufficiently lowers the LUMO energy level to promote cycloadditions controlled by (HOMO_{diene/dipole}-LUMO_{alkene}) interactions,²⁴ despite of its steric hindrance. The reactivity of the trifluoromethylstyrene 2 can be compared to that of the 1-phenylacrylic acid which reacts only slowly with cyclopentadiene (8 days at room temperature).²⁵ In cycloadditions with nitrones 17, the similar reactivity of trifluoromethylstyrene 2 and methylstyrene strongly suggests that the reactions occur through different processes. (HOMO_{nitrone}-LUMO_{alkene}) from 2 and (HOMO_{alkene}-LUMO_{nitrone}) from methyl styrene.²⁶ However a process involving the two possible frontier orbital interactions cannot be excluded in both cases In the absence of any other withdrawing substituent, the s-attracting effect of CF₃ is not strong enough to allow cycloadditions (Diels-Alder and 1,3 dipolar) with trisubstituted olefin to occur. A CF₃-substituted olefin is not able to be complexed by Lewis acids, and other types of activation had to be considered. In Diels-Alder reaction with 5, high pressure and temporarly use of chromium tricarbonyl complex when a phenyl group is present, have been proved to be efficient Trisubstituted olefins bearing both a CF₃ group and another electronwithdrawing group were described to react only with highly reactive dipoles such as nitrile oxide^{11a} and diazomethane.¹⁴ We could find conditions to obtain cycloadducts with nitrones or azomethine ylides, even with hindered olefins such as 10, 15, and 20; the CF₃ group acts as the second electronwithdrawing group required with trisubstituted alkenes. To the best of our knowledge the successful cycloaddition with 20 is the first example of the enol form of a β-ketoester acting as a dipolarophile. The stereo- and regioselectivity of these reactions depend on the structure of the two partners. In Diels-Alder reaction the regioselectivity is the result of the directing effects of both electrondonating substituents on the diene, and the electronic influence of the phenyl and the trifluoromethyl groups on the alkene.²⁷ However the lack of stereoselectivity in these reactions was unexpected. A phenyl substituent is known to stabilise the endo-phenyl transition state (p-stacking).²⁸ Furthermore, the steric hindrance of a CF₃ group should favor its exo approach.^{3b,29} The 1:1 endo/exo ratio of products suggests that secondary electronic interactions between the unsaturated system of the diene and the CF₃ group exist and are stabilizing enough to oppose other effects. In 1,3 dipolar cycloadditions with the nitrone 17, the GC monitoring of the reaction indicates that products are the kinetic ones. The regioselectivity is governed by steric demands: the oxygen of the nitrone adding preferentially the more substituted carbon.³⁰ The lack of stereoselectivity observed with the trifluoromethylstyrene can be explained as for Diels-Alder reactions. From the ethyl trifluoromethylcinnamate 10 or with ethyl trifluoroacetoacetate 20, the high stereoselectivity indicates that, unlike a phenyl group, an ester group governs the stereochemistry of the reaction, through secondary interactions with the dipole, which greatly predominate those of the CF3 group. The approach of the CF3-analogue of Hagemann's ester 15 towards the azomethine ylide is also directed by the ketonic group (*endo* approach) despite of the hindrance of the cyclic framework. The conservation of the stereochemistry of starting olefins in all these cycloadditions strongly suggests concerted process.³¹ In conclusion, the σ -electron withdrawing character of a CF3 group has been proved to be very effective in cycloaddition reactions and allowed the synthesis of highly functionalized CF3-containing polycyclic and heterocyclic compounds to be performed. New compounds could be prepared in good yields, such as isoxazolidines and pyrrolidines and a phenanthrenone. Chiral versions of these reactions are under investigation. #### Acknowledgments We thank Dr Bois (Laboratoire de Chimie des Métaux de Transition, Université Pierre et Marie Curie, Paris VI) for X-ray determinations.³² We thank also the European Union (HCM Network "Synthesis and molecular Recognition of Fluorinated Bioactive Molecules" (ERBCHRXCT 93 0279) for financial support. ### **Experimental section** NMR spectra have been performed with CDCl₃ solution on a Varian EM39O, FH dual probehead, and/or Bruker AC 200 and ARX 400 (¹H: 90, or 200 or 400 MHz, ¹⁹F: 84, 188 or 376 MHz and ¹³C:50, 75 or 100 MHz). Chemical shifts are reported in ppm relative to Me₃Si and CFCl₃ (for ¹⁹F NMR) as internal standards. In the ¹³C NMR data, reported signal multiplicities are related to C-F coupling. For the determination of fine coupling constants an acquisition of 16K data points, a Lorenz-Gauss transformation of the FID, and a zero filling to 64K were performed in order to obtain a minimum of resolution of 0.2 Hz/pt (¹H and ¹⁹F) or 0.5 Hz/pt (¹³C). Cosy, hmqc, hmbc experiments were performed on a multinuclear probehead equipped with a Z-gradient coil. The {¹H}, ¹⁹F, {¹⁹F}, ¹H and heteroNOE experiments were performed on an inverse dual probehead. GC/MS analyses were obtained at 70 eV EI (capillary column CPSIL-5, 25 m). GC analysis was performed on a capillary column SE30, 10 or 25 m). 3-Methoxy-4-phenyl-4-trifluoromethyl-1-trimethylsiloxycyclohex-1-ene (3). 1-Trifluoromethyl styrene 2¹⁵ (2 g, 11.6 mmol), Danishefsky's diene 1 (3 g, 17.5 mmol), hydroquinone (10 mg) and anhydrous THF (15 mL) were placed in a Pyrex tube. The reaction vessel was purged with Argon, sealed, and heated in an oil bath at 140 °C for 140 h. The mixture of stereoadducts $\bf 3a$ and $\bf 3b$ (3.19 g, 80%) was isolated after filtration (SiO₂, eluent: pentane) of the solution. $\bf 3a$ and $\bf 3b$: ¹⁹F NMR $\, \delta$ -69.6 and -69.9 (1:1); ¹H NMR $\, \delta$ 0.05 and 0.15 (1:1) (s, 9 H, Me_3 Si), 2.3 (m, 4H, H-5, H-6), 3.45 and 3.50 (1:1) (s, 3 H, OCH₃), 4.6 (m, 1 H, CHOMe), 5.15 (m, 1 H, H-2), 7.4 (m, 5 H, Ph); ¹³C NMR $\, \delta$ 20.1 (Me_3 Si), 26.4 and 26.8 (C-5), 26.9 (C-6), 49.9 and 50.9 (q, 2J = 23 Hz, C-4), 56.2 and 57.5 (OCH₃), 75.2 and 78.7 (C-3), 102.4 and 104.2 (C-2), 127.0 (q, 1J = 275 Hz, CF₃), 127.6, 127.7, 127.9, 134.6; M S (GC coupled) (EI) $\bf 3a$ 329 (M-CH₃, 4), 313 (18), 159 (17), 158 (44), 157 (100), 142 (15), 141 (35), 103 (5), 45 (7); $\bf 3b$ 329 (M-CH₃, 3), 313 (8), 158 (25), 157 (100), 142 (12), 141 (30), 73 (27), 45 (16). **4-Trifluoromethyl-4-phenyl-2-cyclohexen-1-one** (4). To the crude mixture **3a** and **3b** (3.19 g) in solution in acetonitrile (30 mL) freshly distilled Me₃SiBr (1.55 mL, 11.8 mmol) was added dropwise under Argon at room temperature. After stirring (1 h), the black solution was diluted in ether (50 mL) and hydrolysed with aqueous NH₄Cl (10 mL). The organic layer was washed with brine, dried (MgSO₄), and solvents were evaporated. After chromatography on SiO₂ column (pentane/Et₂O, 98:2), compound **4** was isolated in pure form (2.2 g, 80% yield): mp 62-64 °C (cyclohexane); ¹⁹F NMR δ- 74.2; ¹H NMR δ 2.2 (m, 2 H); 2.6 (m, 2 H); 6.3 (d, $^3J_{\rm HH}$ = 11 Hz, $^4J_{\rm HF}$ = 1.8 Hz, 1 H, H-3); 7.4 (m, 5 H, Phenyl); ¹³C NMR δ 28.9 (C-5), 33.2 (C-6), 50.0 (q, $^2J_{\rm HH}$ = 26 Hz, C-4); 126.6 (q, $^1J_{\rm HH}$ = 283 Hz, CF₃), 128.2, 128.6, 128.8, 134.8 (Ph), 131.9 (C-2), 146.0 (C-3), 196.9 (CO); M.S.: (El) 240 (M⁺, 19), 212 (34), 184 (29), 171 (M - CF₃, 40), 164 (7), 143 (13), 128 (24), 115 (100), 77 (7), 68 (92). Anal. Calcd for C₁₃H₁₁F₃O: C, 65.00; H, 4.61. Found: C, 64.92; H, 4.70. **4a-Trifluoromethyl-4a,9,10,10a-tetrahydrophenanthren-2(1-H)-one (7).** An anhydrous THF solution of trifluoromethyldihydronaphthalene 5^{17} (435 mg, 2.2 mmol), Danishefsky's diene (570 mg, 3.3 mmol) and hydroquinone (10 mg) in pentane solution 5 mL) were heated at 50 °C under 15 Kbar for 66 h. After decompression, THF was evaporated and the crude mixture was diluted in acetonitrile (10 mL), and freshly distilled Me₃SiBr (0.3 mL, 2.3 mmol) was added dropwise. After stirring 1h at r.t., the black solution was diluted in ether (50 mL) and hydrolysed with aqueous NH₄Cl (5 mL). The organic layer was washed with brine, dried (MgSO4), and solvents were evaporated. After chromatography on SiO₂ column (pentane/Et₂O: 8:2), pure compound 7 was isolated (135 mg, 20%): ¹⁹F NMR δ - 70.5; 1H NMR δ 1.7 (m, 1 H), 2.2 (m, 1 H), 2.3 (m, 2 H), 2.9 (m, 3 H), 6.2 (d, ³J = 11 Hz, 1 H. H-3), 7.2 (m, 5 H, H-4 and C₆H₄); ¹³C NMR δ 23.9, 24.8 (C-9, C-10), 33.7 (C-101a), 40.0 (C-1), 48.2 (q, ²J = 24 Hz, C-4a), 126.4 (C-3), 126.9 (q, ¹J = 285 Hz, C-3), 128.4, 129.5, 130.0, 130.2, 130.7, 136.7), 146.4 (C-4), 197.5 (CO); M.S (EI) 266 (M⁺, 35), 246 (M - HF, 29), 224 (14), 209 (12), 197 (M - CF3, 100), 179 (42), 169 (42), 153 (24), 141 (70), 129 (77), 128 (67), 115 (57), 102 (13), 91 (17), 77 (18), 69 (45), 68 (59), 63 (30), 51 (40). Anal. Calcd for C₁₅H₁₃F₃O: C, 67.66; H, 4.92; Found: C, 67.45; H, 4.78. 4a-Trifluoromethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-2-ol (8). An ethanolic solution of 7 (100 mg, 0.38 mmol) was stirred under hydrogen atmosphere (1 bar) in the presence of a catalytic amount of Pd (5 % on C) for 3h at r.t. After filtration of catalyst and evaporation, the crude product was filtered on SiO₂ (pentane-Et₂O 9:1) and compound 8 was isolated (100 mg, 98%). This compound (100 mg, 0.37 mmol) in solution in EtOH was added dropwise to a suspension of NaBH₄ (15 mg, 0.4 mmol) in ethanol (5 mL). After stirring (1h) at r.t., the reaction medium was treated by aqueous NH₄Cl. The organic layer was extracted (Et₂O), washed (brine), dried (MgSO₄). Evaporation of the solvent give the compound 8 (90 mg 90%): mp 70-72 °C (cyclohexane); 19 F NMR δ - 71.4; 1H NMR δ (C_6D_6) 0.84 (m, 1 H, H-3a), 0.99 (ddd, 3J = 11.1 Hz, 2J = 12.6 Hz, 3J = 12.9 Hz, 1 H, H-1a), 1.20 (tdd, 3J = 2.8 Hz, 3J = 6.4 Hz, 2J = 14.1 1 H, H-10a), 1.30 (m, 1 H, H-1b), 1.46 (m, 2 H, H-4a, H-3b), 1.95 (dddd, 3J = 2.6, 3J = 3.9, 3J = 3.9 Hz, 3J = 12.9 Hz, 1 H, H-10a, heteroNOe 10 %), 2.2 (m, 1 H, H-10b), 2.36 (td, 3J = 3.6 Hz, 2J = 14.0, 1 H, H-4b), 2.56 (m, 2 H, H-9); 3.20 (tt, 3J = 4.3 Hz, 3J 11.1 Hz, 1 H, H-2), 6.85-7.2 (m, 4 H); 13 C NMR δ (C_6D_6) 23.8 (q, $^5J_{CF}$ = 2.1 Hz, C-10a), 24.6 (C-9), 27.9 (q, $^4J_{CF}$ = 2.7 Hz, C-4), 30.4 (C-3), 37.1 (C-1), 46.3 (q, $^2J_{CF}$ = 22.5 Hz, C-4a), 69.5 (C-2), 126.3, 127.5, 127.7, 128.4 (q, $^1J_{CF}$ = 284.5 Hz, CF₃), 130.1, 130.6, 138.1; MS (EI) 252 (M-H₂O, 55), 183 (M-H₂O, -CF₃, 100), 141 (56), 129 (39), 128 (20), 111 (17), 57 (13), 55 (10). Anal. Calcd for C₁₅H₁₇F₃O: C, 66.7; H, 6.34. Found: C, 66.8; H, 6.52 1-Trifluoromethyl-3,4-dihydronaphthalene tricarbonylchromium complex (9). To a solution of 1-trifluoromethyl-3,4-dihydronaphthalene 5 (1g. 5 mmol) in dioxane (50 mL) was added $Cr(CO)_3(NH_3)_3$ (1.05 g, 5.6 mmol) in one portion. The mixture was refluxed overnight under a flow of N_2 . Dioxane was evaporated and the residue was filtered on SiO_2 (pentane/ether 8:2). Orange crystals of complexe 9 (1.28 g, 77%) were obtained after recrystallization. 9: mp: 92-94 °C (pentane/ether); ^{19}F NMR δ -64.7 ppm; ^{1}H NMR (acetone-d-6) δ 2.7 (m, 2 H, CH₂), 2.9 (m, 2 H, CH₂), 5.7 (m, 4 H, Ph), 6.9 (m, 1 H, C=CH). Anal. Calc. for $C_{14}H_9O_3F_3Cr$: C, 50.3; H, 2.71. Found: C, 50.1; H, 2.55. **Diels-Alder reaction of 1-trifluoromethyl-3,4-dihydronaphthalene chromium tricarbonyl (9).** A solution of complex **9** (500 mg, 1.5 mmol) in anhydrous THF and Danishefsky's diene (510 mg, 3 mmol) were heated at 50 °C under 15 Kbar for 66 h. After decompression, the mixture was poured in CHCl₃ (50 mL), maintained 5 h under sunlight and filtered on silica (CH₂Cl₂). Solvents were evapored and the residue was diluted in CH₃CN (10 mL). Me₃SiBr (1.5 mmol, 0.2 mL) was added dropwise. After of stirring (1h) at rt, the reaction mixture was diluted in ether and washed with aqueous NH₄Cl, brine and dried (MgSO₄). After chromatography (pentane/ether 8·2), 4a-trifluoromethyl-4a,9,10,10a-tetrahydrophenanthren-2-one **7** (260 mg, 65%) was isolated. Cycloaddition with azomethine ylide from 11. General procedure: To a cooled (0 °C) solution of alkene (2-6 mmol), N-(trimethylsilylmethyl)-N-(pentoxymethyl)-benzylamine 11 (1.2 equiv.) in CH₂Cl₂ (10 mL), stirred under Ar, was added dropwise a solution of CF₃COOH in CH₂Cl₂ (1 mL, 10% molar) over 20-30 min. (1 drop a minute). The reaction mixture was warmed to r. t. and stirred for additional 3 h. The solution was diluted in ether (10 mL), extracted, and the organic layer was washed with an aqueous solution of NaHCO₃, brine, and dried (MgSO₄). After evaporation, the resulting oil was purified by chromatography (pentane/ethyl acetate). **Reaction with 1-trifluoromethylstyrene 2.** 1-Trifluoromethylstyrene **2** (1g, 5.8 mmol) and N-(trimethylsilylmethyl)-N-(pentoxymethyl)-benzylamine **11** (2g, 7 mmol) were reacted with a solution of CF₃COOH (0.6 mL, 0.58 mmol) in CH₂Cl₂ to give a crude product (2g). A chromatography (pentane/ethyl acetate 6:4) afforded the 3-trifluoromethyl-3-phenyl-N-benzylpyrrolidine **12** (1.4 g, 80%): ¹⁹F NMR δ - 73.3 ppm; ¹H NMR δ 2.3-2.8 (m, 4 H, H-4 and H-5), 3 1 (d. J 10 Hz, 1 H, H-2), 3.25 (d, J 10 Hz, 1 H, H-2'), 3.7 (s, 2 H, CH₂Ph), 7.2 (m, 10 H, Ph), ¹³C NMR δ 33.6 (C-4), 53.5 (C-5), 56.5 (q, ²J = 32 Hz, C-3), 59.9 (CH₂N), 60.6 (CH₂N), 127.1, 127.7, 128.1, 128.4, 128.6, 128.7, 136.9, 138.9, 127.2 (q, ¹J = 275 Hz, CF₃); MS (EI) 305 (M+, 75), 228 (7), 214 (12), 134 (11), 133 (52), 132 (66), 103 (14), 92 (30), 91 (100), 77 (9), 65 (34), 51 (18). Anal. Calcd for C₁₈H₁₈F₃N: C, 70.8, H, 5.94, N, 4.59 Found: C, 70.9; H, 5.80; N, 4.50. Reaction with ethyl (*E*)-1,1,1-trifluoro-1-phenylbuten-2-oate (10). Ethyl (*E*)-1,1,1-trifluoro-1-phenylbuten-1-oate 10 (500 mg, 2 mmol) and N-(trimethylsilylmethyl)-N-(pentoxymethyl)-benzylamine 11 (700 mg, 2.4 mmol) in CH₂Cl₂, were reacted with a solution of CF₃COOH in CH₂Cl₂ (0.2 mL, 0.2 mmol). The crude oil (1.1g) led, after chromatography (pentane/ethyl acetate, 6:4) to the 3-trifluoromethyl-3-phenyl-4-(ethyl carbethoxy)-N-benzylpyrrolidine 13 (530 mg 70%): ¹⁹F NMR δ - 71.3; ¹H NMR δ 0.8 (t, J = 7 Hz, 3 H, CH₃), 3.1-3.3 (m, 4 H), 3.6 (m, 3 H, CH₂O), 3.75 (s, 2 H, CH₂N), 7.2 (m, 10 H, Ph); ¹³C NMR δ 13.3 (Me), 49.8 (C-4), 56.1 (OCH₂), 57.9 (q, $^2J = 24$ Hz, C-3), 59.3, 60.5, 61.0, 127.5 (q, $^1J = 283$ Hz, CF₃), 126.9, 127.5, 127.7, 127.9, 128.1, 128.2, 136.9, 138.7, 171.3 (CO). Anal. Calcd for C₂₁H₂₃O₂NF₃: C, 66.8; H 5.87; N, 3.71. Found: C, 67.0; H 5.75; N, 3.60. Reaction with 4-carbethoxy-3-trifluoromethyl-cyclohex-2-ene-1-one (15). 4-Carbethoxy-3-trifluoromethyl-cyclohex-2-ene-1-one 15 (500 mg, 2.1 mmol) and N-(trimethylsilylmethyl)-N-(pentoxymethyl)-benzylamine 11 (780 mg, 2.6 mmol) were reacted with a solution of CF₃COOH (0.21 mL, 0.21 mmol) in CH₂Cl₂. The crude oil (800 mg) led after chromatography (pentane/ethyl acetate, 9:1) to the perhydroisoindolone 16 (370 mg, 48%) and 180 mg of non-indentified products. 16: 19 F NMR δ -71.2; 1 H NMR δ 1.2 (t, J = 7 Hz, 3 H, CH₃), 2.3 (m, 2 H, H-6), 2.5 (m, 2 H, H-5), 2.9 (ddq, $^{3}J_{HH} = 4$ Hz, $^{3}J_{HH} = 9$ Hz, $^{4}J_{HF}$ 1 Hz, 1 H, H-7), 3.0 (m, 1 H, H-3, NOE Hetero H/CF₃ = 10%), 3.1 (m, 2 H, H-2), 3.2 (m, 2 H, H-9), 3.6 (m, 2 H, NCH₂Ph), 4.2 (q, J = 7 Hz, 2H, OCH₂), 7.3 (m, 5 H, Ph). 13 C NMR d 13.8 (CH₃), 21.8 (C-6), 35.4 (C-5), 43.0 (C-7), 50.7 (C-3), 54.6 (q, $^{2}J = 24$ Hz, C-8), 57.2, 58.8, 59.9 (NCH2), 61.2 (OCH₂), 127.1 (q, ^{1}J 282 Hz, CF₃), 127.3, 128.4, 128.5, 137.9, 171.8 (COOEt), 208.7 (CO). MS (EI) 369 (M⁺, 10), 324 (5), 300 (M-CF₃,5), 278 (8), 254 (5), 133 (80), 91 (100), 65 (15). Anal. Calcd for C₁₉H₂₂O₃NF₃: H, 6.00; C, 61.8 Found: H, 6.25; C, 61.9. Compound 14. An ethanolic solution (15 mL, 95%) of 3-trifluoromethyl-3-phenyl-4-(ethyl carbetoxy)-N-benzylpyrrolidine 13 (460 mg, 1.2 mmol), concentrated HCl (2 mL) and 50 mg of Pd/C was stirred under H₂ (normal pressure). After filtration and evaporation, the residu was crystallised (hexane/CH₂Cl₂/ethanol 7:2:1) to give the chlorhydrate 14 (320mg, 82%) as colorless crystals used for X-ray diffraction: mp 214-216 °C; ¹H NMR δ 0.8 (t, J 7Hz, 3 H), 3.8 (m, 5 H), 4.3 (s, 2 H, CH₂N), 7.3 (m, 5 H, Ph), 9.6 (m large, 2 H, NH₂+). Anal. Calcd for C₁₄H₁₇O₂NClF₃: C, 51.9; H, 5.29; N, 4.33. Found: C, 52.0; H, 5.43; N, 4.41. Cycloaddition with Nitrone. General procedure. A conical flask equiped with a condenser was charged with the alkene, the N-(benzylidene)-methylamine-N-oxide 17 (1.2 equiv.) and 30 mL of dried toluene. The mixture was refluxed under N₂. The reaction was monitored by G.C. The toluene was evapored and the residue purified by chromatography on SiO₂ or by recristallisation. Reaction with 1-trifluoromethylstyrene 2 1-Trifluoromethylstyrene 2 (1g, 5.8 mmol) and N-(benzylidene)-methylamine-N-oxide 17 (950 mg, 7 mmol) were refluxed in toluene for 48 h. After column chromatography (pentane/CH₂Cl₂/ether 75:25:5) a non-separable mixture (1:1 ratio) of diastereoisomers 17 was obtained (1.1g, 60%): 19 F NMR δ -78.2 and -78.9 (ratio 1.1), 1 H NMR δ 2.65 and 2.80 (s, 3 H, CH₃N), 2.7-3.3 (m, 2 H, H-4), 3.4-3.8 (m, 1 H, H-3), 7.2-7.4 (m, 10 H, Ph); 13 C NMR δ 43.1 and 43.5 (C-4); 48.3 and 49.3 (CH₃N), 72.6 and 74.0 (C-3), 82.6 (q, 2 J = 30 Hz, C-5), 126.6 (q, 1 J = 270 Hz, CF₃), 127.0-129.1, 136.9, 138.1, 139.0 MS (EI) 307 (M⁺, 100), 136 (12), 135 (40), 134 (90), 106 (7) and 307 (M⁺, 100), 136 (10), 135 (35), 134 (95), 118 (10), 106 (6). Anal Calcd for C₁7H₁₆ONF₃: C, 67.1; H, 4.30; N, 4.60. Found: C, 67.4; H, 4.54; N, 4.65. Reaction with ethyl (*E*)-1,1,1-trifluoro-2-phenylbutenoate (10). Compound 10 (1g, 4.1 mmol) and N-(benzylidene)-methylamine-N-oxide 17 (660 mg, 4.9 mmol) were refluxed for 24h in toluene. The usual work-up and chromatography (pentane/ethyl acetate, 95:5) gave the isoxazolidine 19 as a single isomer (1.1g, 70%): 19 F NMR δ -75.4; 1 H NMR δ 0.95 (t, J=7 Hz, 3 H), 2.8 (s, 3 H, NCH₃), 3.65 (q, $^{2}J=7$ Hz, 2 H, OCH₂), 4.0 (d, J=10.5 Hz, 1 H, H-4), 4.2 (d, J=10.5 Hz, 1 H, H-3), 7.4-7.6 (m, 10 H, Ph); 13 C NMR δ 13.3 (CH₃), 42.8 (C-4), 61.0 (OCH₂), 75.1 (C-3), 83.9 (q, $^{2}J=31$ Hz, C-5), 124.5 (q, $^{1}J=275$ Hz, CF₃), 126.4, 127.9, 128.2, 128.4 128.6, 128.8, 133.5, 135.1 (Ph), 167.3 (CO₂Et); MS (EI) 245 (56), 244 (100), 243 (23), 216 (10), 215 (24), 200 (21), 199 (59), 172 (10), 152 (26), 151 (62), 103 (15), 102 (30), 75 (11), 69 (7). Anal. Calcd for C₂₀H₂₁O₃NF₃: C, 63.3; H, 5.31; N, 3.69. Found: C, 63.2; H, 5.20; N, 3.85. Reaction with ethyl trifluoroacetoacetate (20). Compound 20 (3.0 g, 16.2 mmol) and N-(benzylidene)-methylamine-N-oxide (17) (2.6 g, 19.4 mmol) were refluxed for 24 h in toluene. After evaporation of toluene, the crude product was filtered on SiO₂ column and isoxazolidine 22 was obtained by crystalisation from cyclohexane (3.36 g, 65 %): mp 94-96 °C (cyclohexane), ¹⁹F NMR δ -84.1; ¹H NMR δ 1.15 (t, J = 7 Hz, 3 H, CH₃), 2.7 (s, 3 H, CH₃-N), 3.75 (d, $J_{\text{H-3}}$,H-4 = 11 Hz, H-4), 4.15 (d, d, J 11 Hz, H-3), 4.25 (m, 2 H, CH₂-O), 5.6 (br s, 1 H, OH), 7.4 (m, 5 H, C₆H₅); ¹³C NMR δ 13.7, 43.9 (CH₃-N), 58.7 (C-4), 62.1 (CH₂-O),75.1 (C-3), 98.1 (q, ${}^{2}J = 33$ Hz, C-5), 120.1 (q, ${}^{1}J = 274$ Hz, CF₃), 127.8, 128.9, 129.1, 134.5, 168.9; MS (EI) 136 (20), 135 (100), 118 (12), 108 (10), 107 (20), 91 (16), 66 (24), 51 (15). Anal. Calcd. for C₁₄H₁₆O₄NF₃: C, 52.7; H, 5.05; N, 4.39. Found: C, 52.9; H, 4.85; N, 4.26. Reaction with ethyl (Z)-1,1,1-trifluoro-2-propyloxyoxobutenoate (21). Compound 21 (500 mg, 2.2 mmol) and N-(benzylidene)-methylamine-N-oxide (17) (350 mg, 2.6 mmol) were refluxed for 24 h in toluene. The crude product was a mixture (8:2 ratio) of the two diastereoisomers 23a and 23b. Chromatography (pentane/ethyl acetate: 95:5) afforded isoxazolidines 23a (390 mg, 50%) and 23b (130 mg, 15%). **23a.** ¹⁹F NMR δ -78.9; ¹H NMR δ 1.1 (t, J = 7 Hz, 3 H,CH₃), 1.3 (t, 3 H, J = 7 Hz, CH₃), 1.7 (q, 2 H, J = 7 Hz, CH₂), 2.8 (s, 3 H, CH₃N), 3.65 (d, J = 10.8 Hz, 1 H, H-4),3.7-4.2 (m, 4 H, two OCH₂), 4.3 (d, J 10.8 Hz, 1 H, H-3), 7.5 (m, 5 H, Ph); ¹³C NMR d 10.4, 13.8 (CH₃), 23.1 (CH₂), 44.2 (CH₃N), 61.2, 61.7 (OCH₂), 65.9 (C-4), 73.7 (C-3), 100.7 (q, 2J 33 Hz, C-5), 123.1 (q, 1J = 274 Hz, CF₃), 128.1, 128.7, 128.8, 135.6, 165.9 (CO₂Et); MS (EI) 361 (M⁺,40), 292 (28), 204 (10), 160 (20), 135 (20), 134 (60), 118 (100), 104 (10). Anal. Calcd for C₁₆H₂₂O₃NF₃: C, 56.5, H, 6.14, N, 3.88. Found: C 56.6, H, 6.30; N, 3.75. **23b.** ¹⁹F NMR δ -81.1; ¹H NMR δ 0.9 (t, J = 7 Hz, 3 H, CH₃), 1.0 (t, J = 7 Hz, 3 H, CH₃), 1.55 (m, 2 H, CH₂), 2.75 (s, 3 H, NCH₃), 3.7 (t, J = 7 Hz, 2 H, OCH₂), 3.8 (q, J = 7 Hz, 2 H, OCH₂), 3.85 (d, J = 7.5 Hz, 1 H, H-4), 3.95 (d, J = 7.5 Hz, H-3), 7.3 (m, 5 H, Ph), ¹³C NMR d 10.1 (CH₃), 13.4 (CH₃), 22.8 (CH₂), 43.7 (C-4), 60.3, 60.6, 66.1, 74.6 (C-3); 101.5 (q, 2J = 30 Hz, C-5); 123.5 (q, 1J = 272 Hz, CF₃), 127.2, 128.4, 129.5, 133.9, 167.5 (COOEt); MS (EI) 361 (M⁺, 100), 302(6), 253 (2), 136(20), 135 (40), 134 (45), 120 (14). Anal. Calcd for C₁₆H₂₂O₃NF₃: C, 56.5; H, 6.14; N, 3.88. Found: C, 56.7; H, 6.35; N, 3.65. ### References and note - # This paper constitues a part of the Ph Dissertation of Dr T. Lequeux (Paris-XI, Orsay, 12-15-1993. - 1. Hanzawa, Y.; Suzuki, M.; Kobayashi, Y.; Taguchi, T.; Iitaka, Y. J. Org. Chem. 1991, 56, 1718-1725. - Nemoto, H.; Satoh, A.; Fukumoto, K.; Kabuto, C. J. Org. Chem. 1995, 60, 594-600; Nemoto, H.; Satoh, A.; Fuskumoto, K. Synlett 1995, 199. - 3. a) McBee, E. T.; Hsu, C. G.; Roberts, C. W. J. Am. Chem. Soc. 1956, 78, 3389-3392; ibid 1956, 78, 3393-3396; b) Ojima, I.; Yanatabe, M.; Fuchikami, T. J. Org. Chem. 1982, 47, 2051-2055; c) McBee, E. - Pierce, O. R.; Roberts, C. W. J. Am. Chem. Soc., 1955, 77, 915-919; d) Gaede, B.; Balthazor, T.M. J. Org. Chem. 1983, 48, 276-277. - a) Leroy, J.; Wakselman, C. Can. J. Chem. 1976, 54, 218-225; b) Tanaka, K.; Mori, T.; Mitsuhashi, K. Bull. Chem. Soc. Jpn. 1993, 66, 263-268. - 5. Bégué, J.P.; Bonnet-Delpon, D.; Lequeux, T.; d'Angelo, J.; Guingant, A; Synlett, 1992, 146-148. - 6. Bonnet-Delpon, D.; Lequeux, T.; Gruselle, M.; Malezieux, B. App. Organometal. Chem. 1994, 8, 551-552 - 7. Bégué, J.P.; Bonnet-Delpon, D.; Lequeux, T. Tetrahedron Lett 1993, 34, 3279-3282 - 8. Bégué, J.P., Bonnet-Delpon, D., Lequeux, T. J. Chem. Soc. Perkin Trans. I 1991, 2888-2889 - 9. Taguchi, T.; Hosoda, A.; Tomizawa, G.; Kawara, A. Chem. Pharm. Bull. 1987, 35, 909-912; Bégué, J.P.; Bonnet-Delpon, D.; Rock, M.R.; M'Bida, A. unpublished results. - Leroy, J.; Fischer, N.; Wakselman, C. J. Chem. Soc. Perkin Trans 1 1990, 1281-1287; McBee, E.T.; Koegh, M.J.; Levek, R.P.; Wesseler, E.P. J. Org. Chem. 1973, 38, 632-636; Braendlin, H.P.; Zielinsky, A.Z.; McBee, E.T. J. Am. Chem. Soc. 1962, 84, 2109-2112; Hanzawa, Y; Suzuki, M., Kobayashi, Y. Tetrahedron Lett. 1989, 30, 571-574. - a) Bravo, P.; Bruché, L.; Mele, A.; Zecchi, G. J. Chem. Research 1991. (S) 81; b) Bravo, P.; Bruché, L.; Fronza, G.; Zecchi, G. Tetrahedron 1992, 48, 9775-9788; c) Fayn, J.; Cambon, A. J. Fluorine Chem. 1988, 40, 63-69. - 12. Iwaoka, T.; Katagiri, N.; Sato, M.; Kaneko, C. Chem. Phurm. Bull. 1992, 40, 2319-2324; Iwaoka, T.; Murohashi, T.; Katagiri, N.; Sato, M.; Kaneko, C. J. Chem. Soc. Perkin Trans. 1 1992, 1393-1397. - 13. Blazejewski, J.C.; Le Guyader, F.; Wakselman, C. Tetrahedron Lett. 1992, 30, 499-502. - 14. Bravo, P.; Bruché, L.; Diliiddo, D.; Fronza, G. J. Chem. Research 1992, (S) 40. - 15. Tarrant, T.; Taylor, R.E. J. Org. Chem. 1959, 24, 238-239 - 16. Treatment of crude adducts with aqueous HCl (0.1N) in THF led to a mixture of enone and β-methoxyketone, see: a) Danishefsky, S., Yan, C. F.; Singh, R. K.; Gammill, R. B.; McCurry, P. M.; Fritsch, N.; Clardy, J. J. Am. Chem. Soc. 1979, 101, 7001-7008; b) Danishefsky, S.; Kitihara, T.; Yan, C.F.; Morris, J. ibidem 1979, 101, 6996-7000; c) Vorndam, P. E. J. Org. Chem. 1990, 55, 3693-3695. - 17. Bonnet-Delpon, D.; Charpentier, M.; Jacquot, R. J. Org. Chem. 1988, 53, 759-762. - a) Hosomi, A.; Sakata, Y.; Sakurai, H. Chem. Lett. 1984, 1117-1120;. b) Terao, Y.; Aono, M.; Achiwa, K. Heterocycles 1988, 27, 981-1008; c) Terao, Y.; Achiwa, K.; Kotaki, H.; Imai, N. Chem. Pharm. Bull. 1985, 33, 2762-2766; d) Achiwa, K.; Sekiya, M. Tetrahedron Lett. 1982, 23, 2589-2592; e) Achiwa, K.; Imai, N.; Motoyama, T.; Sekiya, M. Chem. Lett. 1984, 2041-2044. - 19. Bégué, J.P.; Bonnet-Delpon, D.; Dogbeavou, A. Synthetic Comm, 1992, 22, 573-579. - 20. Eguchi, T.; Aoyama, T.; Kakinuma, K. Tetrahedron Lett. 1992, 33, 5545-5546. - 21. Aubert, C.; Bégué, J.P.; Charpentier, M.; Née, G.; Langlois, B. J. Fluorine Chem. 1989, 44, 361-376. - 22. Using the procedure described for the preparation of 9, chromium complexes of α-methylstyrene and 1-methyl-3,4-dihydronaphthalene were obtained respectively in 60 % and 72 % yield. - 23. Similar reactivity has been reported from the α-methylstyrene: see ref. 28 - 24. Sustmann, R. Tetrahedron Lett. 1971, 12, 2117 - 25. Alder, K.; Günzl, W. Chem. Ber. 1960, 93, 2271-2281 - (a) Houk, K. N.; Sims, J.; Duke, R. E.; Storzier, R. W.; George, J. K. J. Am. Chem. Soc. 1973, 95, 7287-7300; (b) Huisgen, R. J. Org. Chem. 1976, 41, 403-419. - 27. Houk, K. N. J. Am. Chem. Soc. 1973, 95, 4092-4092 - 28. Tucker, J.A.; Houk, K.N.; Trost, B.M. J. Am. Chem. Soc. 1990, 112, 5465-5471. - 29. Nagai, T.; Nishioka, G.; Koyama, M.; Ando, A.; Miki, T.; Kumadaki, I. Chem. Pharm. Bull. 1991, 39, 233-235 and ref. cited herein. - 30. Black, D.C.; Crozier, R.F.; Davis, V.C. Synthesis 1975, 205-221. - 31. Houk, K.N.; Gonzales, J.; Li, Y. Acc. Chem. Res. 1995, 28, 81-90. - 32. X-ray crystallographic data have been determined by Dr Bois (Université Pierre et Marie Curie Paris VI Laboratoire des Métaux de Transition) The authors have deposited atomic coordinates for these structures with the Cambridge Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK).